
Chickadee User's Manual

by Ivan L. Baggett

Rev. 1.0 09/24/96

Rev. 1.1 10/30/98

Copyright 1996-1998 Bagotronix

All rights reserved

The material presented in this document is the intellectual property of Bagotronix, except for

material furnished by others where indicated. No part of this publication may be reproduced or

distributed in any form or by any means, or stored in a data base or retrieval system, without

the prior written permission of Bagotronix.

Bagotronix

1019 Crossing Brook Way

Tallahassee, FL 32311

850-942-7905

Chapter 1: Introduction

2

Chapter 1: Introduction

1

The Chickadee is a single board computer for embedded control applications. Measuring just

3.55 x 6.5 x 0.6 inches and consuming only 350 mW of power, the Chickadee incorporates all

of the I/O interfacing, memory storage, processing, communications, and user interface

elements of most control applications. When connected to PC/104 modules, an even more

capable control system is produced. The control system software may be programmed in

Borland C/C++ or Microsoft C/Visual C++.

Chickadee features:

• 80C188 CPU at 8MHz (higher speeds to 25 MHz optional)

• Up to 512K SRAM, battery backable

• Up to 512K EPROM or 256K Flash EEPROM

• Real time clock with timed power-up and 0.5K non-volatile SRAM (optional)

• 0.5K serial EEPROM

• Power monitor with power-on reset, watchdog timer, and power fail warning

• PC/104 expansion bus (PC/104 version)

• Power requirement: 5V only, at 70 mA typical (stand-alone version)

• 2 8250-compatible serial communication ports (1 RS-232 standard, 1 RS-232/485

optional, 16550-compatibility optional)

• Galvanic isolation and surge protection for RS-232/485 port (optional)

• 16 82C55-type TTL I/O

• 7 relay driver outputs

• 8 AC/DC optically isolated inputs (optional)

• 8-channel 12-bit ADC (optional)

• 2 counter/timer inputs, 1 counter/timer output

• LED status indicators for relay, opto, and serial I/O (optional)

• On-board reset pushbutton and LED indicator

• Character LCD interface with software adjustable contrast

• Keypad interface for switch matrix keypads up to 4 x 4

Chapter 1: Introduction

2

• Voltage regulator with transient protection (optional)

• 4-layer FR-4 PCB

The burden of hardware development is eased by the many features and great flexibility of the

Chickadee. The burden of software development is eased by the use of low cost, familiar

software tools such as Borland C/C++ or Microsoft C/Visual C++. During development of

your application software, debugging is accomplished with the use of Paradigm DEBUG/RT

and LOCATE.

To help you get the most out of the Chickadee, Bagotronix offers Chickadee application

assistance at no charge. If you require design assistance for other parts of your control system,

Bagotronix consulting design services are available for a nominal fee.

Organization

The organization of the Chickadee User's Manual is logically divided into several chapters.

Procedures for writing, compiling, and debugging control system software are covered in

Chapter 4: Software Development. Interfacing to the expansion bus, keypad, LCD, serial, and

I/O ports is discussed in Chapter 3: Hardware Reference. Technical information about the

Chickadee is in the Appendix section.

Throughout this manual, it is assumed that you have some experience in C programming, 8086

assembly language, and PC usage. The development process involves these steps:

1) Design or acquire your application's I/O hardware (sensors, switches, relays, solenoids,

etc.)

2) Connect the Chickadee to your application's I/O hardware and the PC serial port

3) Write and debug your application

3

Chapter 2: Setup

4

Chapter 2: Setup

5

Overview

This chapter tells you how to set up the Chickadee for development activities. You are

probably eager to get started on your design project, but please take time to read this chapter

first.

What you Need

To develop your application software you need at least the following items:

1) Chickadee with 128K or 512K SRAM and a ROM containing DEBUG/RT kernel

2) Sunflower C software library on floppy disk

3) DB9F to DB9F null-modem serial adapter (crossover cable)

4) JP11 or JP15 cable for Chickadee (if not using a serial port on a PC/104 expansion card)

5) Borland C/C++ or Microsoft C/Visual C++ compiler

6) Paradigm DEBUG/RT and LOCATE development software

7) PC with an available serial port

8) DC power source with red and black wires for attachment

Items 1 - 4 are included with the Chickadee Development System.

How to Connect It All

There are two different setups. The first is if you are using one of the two serial ports on the

Chickadee as the debugger port. The second is if you are using a third serial port on a PC/104

expansion board as the debugger port.

Debugger port on Chickadee:

1) Place the Chickadee on the table. Verify that the debugger kernel ROM is installed in U4

and the SRAM is installed in U6. Verify that standoffs are installed on the bottom side of

the Chickadee to prevent direct contact of the circuit board with the table surface.

2) Connect a red wire to JP12 pin 1. This is the positive (+) power supply feed.

3) Connect a black wire to JP12 pin 2. This is the negative (-) power supply feed, also called

“ground”. Note: instead of the connections to JP12 pin 1 and JP12 pin 2, you may connect

+5V to JP6 pin 4 and ground to JP6 pin 2, respectively.

Chapter 2: Setup

6

4) Connect the other end of the red (+) wire to the positive (+) terminal of your power

source. If the voltage regulator option is installed, the power source may be in the range of

7 to 26 VDC. If the voltage regulator option is not installed, the power source must be 5

+/- 0.2 VDC. Any voltage beyond these ranges may result in damage or improper

operation of the Chickadee.

5) Connect the other end of the black (-) wire to the negative (-) terminal of your power

source.

6) Turn the power source on. The red LED “RESET IND” should illuminate for a fraction of

a second, then extinguish. If it glows steadily or flickers, the voltage may be too low.

7) Turn the power source off.

8) Connect the DB9F to DB9F null-modem serial adapter (crossover cable) to the DB9M on

your PC. See Fig. 2-1. If your PC’s serial port does not use a DB9M AT-style serial

connector, you will need an adapter.

9) Connect the JP11 or JP15 cable into whichever Chickadee serial port (JP11 or JP15) you

will be using for the debugger. Note that using JP15 for the debugger requires the second

RS-232 serial port option.

10) Connect the other end of the JP11 or JP15 cable to the free end of the DB9F to DB9F null-

modem serial adapter. Go to the section “Checking it Out”.

Fig. 2-1: Chickadee Development Setup

Debugger port on PC/104 expansion board:

1) Follow steps 1 - 9 of the “Debugger port on Chickadee” procedure.

Chapter 2: Setup

7

2) Attach the PC/104 expansion board to the Chickadee with standoffs. Be sure to engage all

PC/104 connector pins.

3) Verify that the interrupt jumpers and I/O address dipswitches on the PC/104 expansion

board are correct for the debugger configuration you will be using. Check the debugger

kernel ROM label for details.

4) Turn the power source on. The red LED “RESET IND” should illuminate for a fraction of

a second, then extinguish. If it glows steadily or flickers, the voltage may be too low.

5) Turn the power source off.

6) Attach the PC/104 expansion board serial cable to the PC/104 expansion board in the

manner prescribed by its user manual.

7) Attach the other end of the PC/104 expansion board serial cable to the free end of the

DB9F to DB9F null-modem serial adapter.

Checking it Out

It is assumed that the compiler you will use for software development is already installed on

your PC. If this is not so, install it now.

1) Install the Paradigm DEBUG/RT and LOCATE development software on your PC.

2) To check the serial link between your PC and the Chickadee, change to

C:\PDREM\UTILS (assuming drive C:) and type “RTTEST”. This will invoke the

Paradigm PDREMOTE Test Aid. Set the baud rate to 115,200 (F5) and select the proper

port (F4). Press F2 several times to send nulls to the Chickadee and observe the responses

in the window. Exit (F9) the program. If this does not work, recheck your power and

serial cable connections, and PC/104 expansion board jumpers and dipswitches (if

applicable), and try again. If this still does not work, call Bagotronix technical support.

3) Insert the Sunflower C library floppy disk in your PC, create a directory

\CHICKADE\CSFC on your PC’s hard disk and copy the Sunflower C source files into

them.

4) Change to the \CHICKADE\CSFC directory. After reading the README.TXT file, run

your compiler and the Paradigm tools using the makefile to build the Sunflower C library

examples.

Chapter 2: Setup

8

5) Load some of the example programs. Try stepping through the code one line at a time.

You can even trace into Sunflower C library functions, since they still have debugging

information.

If your attempt to get started was unsuccessful, go back and examine each step to see if it was

done correctly. It is important to get this test working, since you will not be able to develop

your application software unless the Chickadee and your PC cooperate. Serial ports are

frequently troublesome. If your PC has a non-standard serial port, you are in for some

detective work.

9

Chapter 3: Hardware Reference

10

Chapter 3: Hardware Reference

11

Overview

This chapter contains information on how to use the Chickadee peripherals. It is assumed that

you are familiar with C and 8086 assembly language, possess a working knowledge of

electronics, and have access to data sheets of every key integrated circuit used in the Chickadee

design.

CPU

The Chickadee uses the 80C188 CPU, which comes in several variations. Subject to

availability, compatible variants of the 80C188 may be substituted. Originally designed by

Intel, the 80C188 provides object code compatibility with the 8086.1 The 80C188 also has

several enhancements to the 8086 instruction set.2

The 80C188 has a memory address range of 1 MB. The I/O address range is 64 KB. The on-

chip peripherals include a power-save unit, interrupt control unit, timer/counter unit, chip select

unit, DMA unit, and refresh control unit. The CPU clock rate can range from 8 to 25 MHZ

depending on the grade of CPU and crystal installed.

Memory

Chickadee memory map:

00000h - 7FFFFh RAM (1 chip)

80000h - (x-1)h PC/104 expansion bus (if applicable)

 (x)h - FFFFFhROM (1 chip)

where x is the starting address for the Upper Chip Select (UCS) pin of the 80C188. The UCS

may be configured for any convenient size up to 256K inclusive.3 If it is desired to use a 512K

ROM, U5 must be factory configured to direct all memory accesses from 80000h to FFFFFh

to the ROM. Note that this configuration would preclude any use of these memory addresses

180C186EA/80C188EA User's Manual, (Intel Corporation, 1991), Chapter 2, p. 14.

2Ibid., Appendix A, pp. 1-9.

3Ibid., Chapter 6, p. 6.

Chapter 3: Hardware Reference

12

by the PC/104 expansion bus, such as video, solid state disks, BIOS extensions, etc. Jumper

JP3 must be configured for the ROM size and type. Jumper JP7 must be configured for the

RAM size and type.

RAM: either SRAM or pseudo-SRAM may be used in the RAM socket. If you require data

retention without main power, you should use low power SRAM (1 to 2 uA data retention

current) and a 3 to 3.6 V lithium battery. If data retention without main power is not

important, use of pseudo-SRAM may lower memory costs. Since pseudo-SRAM requires a

refresh signal, the refresh control unit (RCU) must be activated to use it, and JP7 pins 2 and 4

must be jumpered together. Useful device sizes are: 8K, 32K, 128K, 256K, and 512K, with

jumpers on JP7 set according to Figure 3-1. When inserting a 28-pin DIP device, leave U6

RAM

SA0
SA1
SA2
SA3
SA4
SA5

A0 12

A1 11

A2 10

A3 9

A4 8

A5 7

A6 6

A7 5

A8 27

A9 26

A10 23

A11 25

A12 4

A13 28

A14 3

A15 31

A16 2

CE1 22

OE 24

WE 29

CE2 30

O0 13

O1 14

O2 15

O3 17

O4 18

O5 19

O6 20

O7 21

RFSH 1

U6
SD0
SD1
SD2
SD3
SD4
SD5 1 2

D3

VCCRAM

EXTERNAL
BATTERY

1
2

JP1

SIP\2P

TO

+
-

C8
0.01

D4

VCC
VCCRAM

SD[0..7]

SD6
SD7

SA6
SA7
SA8
SA9
SA10
SA11
SA12
SA13
SA14

-CSRAM
-RD
-WR

SA15
SA16

CE2/SA17 -RFSH/SA18

RAM TYPE:

<= 32KX8
SRAM

JUMPERS:

JP7(1-3)

JP7(1-3) & JP7(2-4)
JP7(1-3)

JP7(3-5) & JP7(2-4)
JP7(3-5)

128KX8

256KX8

512KX8

SRAM
PSRAM

SRAM
PSRAM-RFSH/SA18

SA18

-REFRESH1 2
3 4
5 6

JP7

HEADER3X2

VCC
CE2/SA17
SA17

SA[0..19]

SRAM JP7(3-5) & JP7(4-6)

Figure 3-1: RAM

Chapter 3: Hardware Reference

13

socket pins 1,2, 31, and 32 empty. Note that a 512K device requires U5 to be installed and

factory programmed.

RAM Backup: connect a battery power source to JP1, observing correct polarity as shown in

Figure 3-1. Incorrect polarity will not damage the Chickadee or the RAM chip, but will result

in loss of data when main power is removed. Various battery types may be used, but lithium

batteries are best. They have long service life, wide temperature range, and high capacity. A

standard PC-type 3.6 V lithium battery works well. Also recommended are two 1.5 V AA

alkaline batteries wired in series for 3 V. Voltages higher than 3.6 V are not recommended

since the standby current of SRAM goes up

sharply with voltage. For example, three AA

cells actually give less battery life than two AA

cells!

ROM: either EPROM (27CXXX series) or

blocked/sectored flash EEPROM with 5 V

programming voltage (29FXXX series) may be

used in the U4 ROM socket. With the

Chickadee, bulk erase flash is not useful for

updateable storage, because erasure would

obliterate the boot code. However, bulk erase

flash may still be used like an EPROM for boot

code. Useful device sizes are: 32K, 64K, 128K,

256K, and 512K, with jumpers on JP3 set

according to Figure 3-2. When inserting a 28-

pin DIP device, leave U4 socket pins 1,2, 31,

and 32 empty. Note that a 512K device requires

U5 to be installed and factory programmed.

SA0
SA1
SA2

ROM

A0 12

A1 11

A2 10

A3 9

A4 8

A5 7

A6 6

A7 5

A8 27

A9
 26

A10 23

A11 25

A12 4

A13 28

A14 29

A15 3

A16 2

CE 22

OE 24

VPP 1

A18 31

O0 13

O1 14

O2 15

O3 17

O4 18

O5 19

O6 20

O7 21

A17 30

U4

27040

SD0
SD1
SD2

SD[0..7]

SD3
SD4
SD5
SD6
SD7

SA3
SA4
SA5
SA6
SA7
SA8
SA9
SA10
SA11
SA12
SA13
SA14
SA15
SA16
VCC/SA17

-CSROM
-RD

USE 5V
FLASH
ONLY

-WR
-WR/SA181 2

3 4
5 6

JP3

HEADER3X2

VCC

VCC

-WR/SA18

VCC/SA17
SA17

ROM TYPE:

SA[0..19]

JUMPERS:

SA18

ROM
FLASH

ROM
FLASH

JP3(1-3)
JP3(1-3) & JP3(2-4)

JP3(3-5)
JP3(3-5) & JP3(2-4)

<=128KX8

256KX8

512KX8
ROM JP3(3-5) & JP3(4-6)

Figure 3-2: ROM

Chapter 3: Hardware Reference

14

PC/104 Expansion Bus:

If your application needs only the built-in I/O on the Chickadee, there is no need to use the

PC/104 expansion bus. Otherwise, use of the PC/104 bus is necessary. The PC/104 bus

signals are listed in Table 3-1. Active low signals are designated by an asterisk (*).

Pin Number J1/P1 Row A Description
1 IOCHCHK* I/O Channel Check - input; not implemented, NC
2 SD7 System Data bit 7 - bidirectional 3-state with 10K pull-up resistor
3 SD6 System Data bit 6 - bidirectional 3-state with 10K pull-up resistor
4 SD5 System Data bit 5 - bidirectional 3-state with 10K pull-up resistor
5 SD4 System Data bit 4 - bidirectional 3-state with 10K pull-up resistor
6 SD3 System Data bit 3 - bidirectional 3-state with 10K pull-up resistor
7 SD2 System Data bit 2 - bidirectional 3-state with 10K pull-up resistor
8 SD1 System Data bit 1 - bidirectional 3-state with 10K pull-up resistor
9 SD0 System Data bit 0 - bidirectional 3-state with 10K pull-up resistor
10 IOCHRDY I/O Channel Ready - input with 1K pull-up resistor; pull low to insert

wait states
11 AEN Address Enable - output; not implemented, tied to GND
12 SA19 System Address bit 19 - output
13 SA18 System Address bit 18 - output
14 SA17 System Address bit 17 - output
15 SA16 System Address bit 16 - output
16 SA15 System Address bit 15 - output
17 SA14 System Address bit 14 - output
18 SA13 System Address bit 13 - output
19 SA12 System Address bit 12 - output
20 SA11 System Address bit 11 - output
21 SA10 System Address bit 10 - output
22 SA9 System Address bit 9 - output
23 SA8 System Address bit 8 - output
24 SA7 System Address bit 7 - output
25 SA6 System Address bit 6 - output
26 SA5 System Address bit 5 - output
27 SA4 System Address bit 4 - output
28 SA3 System Address bit 3 - output
29 SA2 System Address bit 2 - output
30 SA1 System Address bit 1 - output
31 SA0 System Address bit 0 - output
32 GND Ground

Table 3-1: PC/104 Expansion Bus Signals

Chapter 3: Hardware Reference

15

Pin Number J1/P1 Row B Description
1 GND Ground
2 RESETDRV Reset Driver - output; active high when CPU is in reset
3 +5V +5V power supply voltage
4 IRQ2 Interrupt Request 2 - input with 10K pull-up resistor
5 -5V -5V power supply voltage - not required or generated by

Chickadee
6 DRQ2 DMA Request 2 - input; not implemented; NC
7 -12V -12V power supply voltage - not required or generated by

Chickadee
8 ENDXFR* End Transfer - input; not implemented; NC
9 +12V +12V power supply voltage - not required or generated by

Chickadee
10 (KEY) Ground - used for connector keying on some PC/104 systems
11 SMEMW* System Memory Write - output; active low
12 SMEMR* System Memory Read - output; active low
13 IOW* I/O Write - output; active low
14 IOR* I/O Read - output; active low
15 DACK3* DMA Acknowledge 3 - output; not implemented; tied to +5V
16 DRQ3 DMA Request 3 - input; not implemented; NC
17 DACK1* DMA Acknowledge 1 - output; not implemented; tied to +5V
18 DRQ1 DMA Request 1 - input; not implemented; NC
19 REFRESH* DRAM Refresh - output; connected to Refresh Control Unit
20 SYSCLK System Clock - frequency related to CPU clock
21 IRQ7 Interrupt Request 7 - input with 10K pull-up or 1K pull-down

resistor
22 IRQ6 Interrupt Request 6 - input with 10K pull-up resistor
23 IRQ5 Interrupt Request 5 - input with 10K pull-up resistor
24 IRQ4 Interrupt Request 4 - input with 10K pull-up or 1K pull-down

resistor
25 IRQ3 Interrupt Request 3 - input with 10K pull-up resistor
26 DACK2* DMA Acknowledge 2 - output; not implemented; tied to +5V
27 TC Terminal Count - output; not implemented; tied to Ground
28 BALE Bus Address Latch Enable - output; indicates valid address

when low
29 +5V +5V power supply voltage
30 OSC 14.31818 MHz Oscillator - output; not implemented; NC
31 GND Ground
32 GND Ground

Table 3-1 (continued): PC/104 Expansion Bus Signals

As a minimum, interfacing to the PC/104 expansion bus requires I/O address decoding and

bidirectional transfer of data. Your application I/O hardware may also require memory address

decoding, interrupt requests, and wait states. Since most I/O hardware uses a small number of

consecutive byte addresses, it should be mapped into I/O space, not memory space. Memory

Chapter 3: Hardware Reference

16

space should only be used for RAM, ROM, EEPROM, video hardware, or highly specialized

I/O.

PC/104 Expansion Bus Timing: Proper synchronization with the PC/104 expansion bus is

essential for your I/O circuitry to function. If your I/O circuitry cannot keep up with the

Chickadee CPU, it must generate wait states. Wait states inform the CPU that the bus

operation currently in progress will take longer than usual. If the Chickadee CPU is clocked at

8 MHz or less and your I/O circuit uses LSTTL/HCMOS logic, you probably do not need to

use wait states. If the Chickadee CPU is clocked at 16MHz, you probably need to use at least

one wait state, or FAST/FACT logic. The speed limiting factors are usually the I/O devices,

such as peripheral interfaces, counters, A/D converters, UARTs, etc. These are usually much

slower than logic devices. For PC/104 expansion bus timings, refer to an ISA bus technical

reference4.

Interrupts: Interrupts can operate in two different modes: edge-sensitive and level-sensitive.

The PC/104 expansion bus mainly uses edge-sensitive interrupts, but either mode may be used.

In edge-sensitive mode, interrupt requests are made on the rising edge (low-to-high transition)

of the request pulse. In the level-sensitive mode, interrupt requests may occur as long as the

interrupt request line remains high.5 Two or more devices may share the same interrupt in

level-sensitive mode. The PC/104 expansion bus interrupt request lines are held high (or low)

by pull-up (or pull-down) resistors on the Chickadee. Do not use a push-pull (totem-pole) type

driver if you intend for two or more devices to share an interrupt. If an IRQn line is operated

in level-sensitive mode, your I/O circuitry must allow the IRQn line to be pulled low by a

resistor under normal conditions, and drive it high only during the interrupting condition. The

Chickadee interrupt circuitry is shown in Figure 3-3. Note that IRQ4 and IRQ7 can be jumper

configured for 1K pull-down or 10K pull-up resistors. IRQ2, IRQ3, IRQ5, and IRQ6 have

only 10K pull-up resistors on-board, but can use 1K pull-down resistors located on a PC/104

expansion board.

4 Several good technical references exist, such as Interfacing to the IBM Personal Computer, Second
Edition, Lewis C. Eggebrecht, (Howard W. Sams and Company), and IEEE-P996.
580C186EA/80C188EA User's Manual, Chapter 8, pp. 9-10.

Chapter 3: Hardware Reference

17

DMA: The Chickadee does not support DMA as it is implemented in the PC. This is because

the DMA controller inside the 80C188 CPU is not hardware or software compatible with the

8237 DMA controller used in PCs. This means that PC/104 and ISA boards which require

DMA will not work with the Chickadee.

1
2

J P 4

J U M P E R :

1 - 2 N O N - S H A R E D IR Q 4

J U M P E R :

C O M 1 IR Q 1 2
D 1

1 N 4 1 4 8

IR Q 4

 1 2
D 2

1 N 4 1 4 8

1
2

J P 5

IR Q 7

1 - 2 N O N - S H A R E D IR Q 7

C O M 2 IR Q

J U M P E R S :

1 - 2 N O N - S H A R E D IR Q 4
1 - 3 S H A R E D IR Q 4
6 - 5 N O N - S H A R E D IR Q 7

V C C

R 9
1 0 K

R 1 0
1 K

IO R D Y

R 6

1 K

R 2

1 0 K

V C C

R 3

1 0 K

R 4

1 0 K

IR Q 2

IR Q 3

IR Q 5

1 2
3 4
5 6

J P 2

H E A D E R 3 X 2

IR Q 7

6 - 4 S H A R E D IR Q 7

R 7
1 K

IR Q 4

R 8
1 0 K

N O T E S :

1) P C D M A N O T S U P P O R T E D

2) P C N M I N O T S U P P O R T E D

V C C
IR Q 6

R 5

1 0 K

C O M 1

-
-

C P U I /O

IR Q 2
IR Q 3
IR Q 4

P C

R E S E R V E D
C O M 2
C O M 1

P C I /O

3) IN T E R R U P T M A P P IN G :

IN T 0

IN T 2 E

C
BD M A 1

V E C #C P U

IN T 1

IN T 3 F

D
AD M A 0

IR Q 5
IR Q 6
IR Q 7

F L O P P Y
L P T 1

H A R D -
-
C O M 2

Figure 3-3: Interrupt Circuitry

Chapter 3: Hardware Reference

18

In describing DMA use, a DMA operation refers to one or more read/write cycles of the DMA

unit, and a DMA transfer refers to a single read/write cycle. Thus, an operation is made up of

one or more transfers. DMA transfer timings are the same as read and write timings, except

for destination synchronized transfers, where two idle states are inserted at the end of the

deposit (write) cycle.6 Two consecutive bus cycles are required for a DMA transfer: one to

read the data from the source, and one to write the data to the destination. The DMA request

timing is as follows: to initiate the DMA operation, DRQn must be driven high for at least one

SYSCLK clock, and remain high for the duration of the DMA operation. DRQn must be

deasserted at least four clocks before the end of the DMA operation, or another DMA transfer

will begin, unless the TC (Terminal Count register) is programmed to limit the number of

DMA transfers. In the Chickadee, the DMA request inputs to the 80C188 are connected to

IRQ3 and IRQ6. Since the 80C188 does not support PC-style DMA, it makes sense to use the

DMA channels as interrupt request inputs. This is made to work by software which programs

the DMA channel to perform a dummy transfer and interrupt upon terminal count. In the

interrupt service routine, the DMA channel is rearmed and the interrupt request is

acknowledged. See the Sunflower C library for precoded interrupt service routines to

implement this technique.

I/O Mapped Peripherals: The purpose of I/O address decoding is to generate chip select

signals for the peripheral chips on your PC/104 expansion board. The allowable range of I/O

addresses is 000h to 3FFh.

On-Board Peripherals:

A summary of the Chickadee on-board peripherals follows. For connector pinouts see

Appendix A.

RS-232 Port: the UART is 8250-compatible7 (16550 type optional), with RS-232

transceivers8 (MAX232) for transmit data (TX), receive data (RX), request to send (RTS), and

680C186EA/80C188EA User's Manual, Chapter 10, pp. 4-5.

7Computer Products Data Manual, (VLSI Technology, Inc., 1990), Chapter 6, pp. 51-74.

Chapter 3: Hardware Reference

19

clear to send (CTS). An IDC connector and ribbon cable with DB9M plug form an AT-like

DTE device. Baud rates to 115.2K, with full or half duplex operation. RS-232 voltages are

generated on-board. COM1 is at I/O address 400h-407h (PC is 3F8h-3FFh) and uses IRQ4.

RS-232/485 Port: may be configured for either RS-232 or RS-485. The UART is 8250-

compatible (16550 type optional), with RS-232 transceivers for TX, RX, RTS, and CTS. An

IDC connector and ribbon cable with DB9M plug form an AT-like DTE device. Baud rates to

115.2K, with full or half duplex operation. RS-232 voltages are generated on-board.

Alternatively, an RS-485 transceiver9 (75176 type) may be used, with half duplex operation to

115.2K baud. Surge protection and jumper selectable 100 ohm AC termination are provided

for RS-485 network connection. Optional galvanic isolation may be added by installing T1,

U24, and U26. COM2 is at I/O address 480h-487h (PC is 2F8h-2FFh) and uses IRQ7 (PC

uses IRQ3).

Peripheral Interface Adapter (PIA): the 7 relay driver outputs and the 16 TTL I/O are

controlled by a 82C55A PIA chip. Each PIA port pin is configured as an input upon power-up

or reset. Software must program each PIA port as either an input or an output.10 The

Sunflower C software library includes functions to program the PIA. The PIA is at I/O address

580h-583h. To use the 7 relay driver outputs, Port B must be configured for output. Any pin

configured as an output on Port A or C can sink 2.5 mA at 0.4 V or source 2.5 mA at 1.7 V,

thereby directly driving optoelectronic I/O modules. There is no need to connect pull-up

resistors to unused pins of the PIA, since each pin has an internal hold device to maintain a

stable state. However, it is mandatory to connect pull-up or pull-down resistors to inputs that

are connected to devices such as switches and open-collector drivers.

Relay Driver Outputs: for operating relays and solenoids up to 500 mA per output and 24V

(up to 50 V by special request - contact Bagotronix tech support). The current rating of each

81992 New Releases Data Book, (Maxim Integrated Products, 1991), Chapter 2, pp. 13-40.

9Interface Circuits, (Texas Instruments, 1991), Chapter 5, pp. 577-586.

10Peripherals, (Intel Corporation, 1990), Chapter 3, pp. 124-146.

Chapter 3: Hardware Reference

20

output depends on how many outputs are on at the same time, what currents are being driven,

and the ambient temperature. Use the following formulas to determine the limits for your

application:

(Eqn. 3-1) Allowable total power dissipation at a given ambient temperature:

PD = 0.95 - 0.0076 · (T - 25)

where T is in Celsius and PD is in watts

(Eqn. 3-2) Power dissipation of one output driver at a given load current:

PD = 0.75 IC + 2 IC
2

where IC is in amperes and PD is in watts

(Eqn. 3-3) Allowable load current at a given power dissipation:

IC = [- 0.75 + (0.5625 + 8 · PD)1/2] / 4

where IC is in amperes and PD is in watts

For example, an ambient temperature of 70 °C results in an allowable total power dissipation of

0.95 - 0.0076 · (70 - 25) = 0.608 W (Eqn. 3-1). If an output driver is driving a relay coil that is

rated at 110 mA, the power dissipation of that output driver is 0.75 · 0.110 + 2 · (0.110)2 =

0.107 W (Eqn. 3-2). From this example, it is shown that at most, five output drivers (0.608 W

/ 0.107 W) may simultaneously operate, each with a 110 mA load. Each output driver

contributes 0.107 W to the total power dissipation. It is possible to operate each output driver

with different loads. For example, at 70 °C one output may drive a solenoid at 300 mA (0.405

W), with four outputs driving 50 mA relay coils (0.043 W each).

Each output is a NPN Darlington with a flyback diode to protect the output from damage due

to back-EMF when coils are de-energized. The relay driver output equivalent circuit is shown

in Fig 3-4. To turn on an output, write a 1 to its Port B bit. This will turn the transistor on,

sinking the load current.

Chapter 3: Hardware Reference

21

OCn

TO JP12

1

2
D18

 1 2

PORT Bn

n = 0..6

Figure 3-4: Relay Driver Output Equivalent Circuit

Note: even though the relay driver outputs are protected from back-EMF, it is still

recommended that each coil have its own flyback diode mounted as close to the coil terminals

as possible. This will reduce the amount of switching noise coupled into sensitive areas of your

system.

Optically Isolated AC/DC Inputs: for interfacing with equipment operating on different

voltages. AC and DC voltages from 3 to 48 V can be accommodated. The eight inputs are

split into two groups of four inputs, each group with its own common terminal. This allows

monitoring of two systems which are isolated from the Chickadee and each other. Polarity is

unimportant, since each optocoupler circuit has anti-parallel LEDs. The equivalent circuit is

shown in Fig 3-5.

Chapter 3: Hardware Reference

22

VCC

 1

 2

4

3

n = 0..7
p = 0 for n = 0..3
p = 1 for n = 4..7

R
In

ICOMp

BITn

Figure 3-5: Optically Isolated AC/DC Input

The bit polarity of the AC/DC inputs is inverted. A voltage present on an input will result in a

‘0’ being read from the status register. No voltage present will result in a ‘1’.

When monitoring AC signals, it is necessary to read the AC/DC inputs several times over an

interval related to the AC frequency. This is because the optocouplers will be extinguished

during AC zero crossing. For example, take the first reading. After 1/6 AC cycle (2.78 ms),

take the second reading. After another 1/6 AC cycle (2.78 ms), take the third reading. Then

take the best two of three to determine the input state: if there were two or more 0’s, then the

AC input is on; if there were two or more 1’s, then the AC input is off.

The Sunflower C library includes functions to operate the AC/DC inputs. IMPORTANT: the

optically isolated AC/DC inputs are NOT intended to isolate large potential differences, such as

AC power mains. The creep distance and pin spacing of the optocoupler circuitry are NOT

sufficient for 110 V and higher circuitry. This feature is mainly intended for isolating ground

paths where potential differences are never more than a few volts.

ADC: for interfacing up to eight channels of analog circuitry, sensors, measuring devices, etc.

with 12-bit resolution. The ADC (U9) is connected to the CPU by a serial “bit-bang” interface,

Chapter 3: Hardware Reference

23

therefore the ADC sample rate is limited by the CPU speed. An 8 MHz CPU is capable of

about 2K samples per second. A 25 MHz CPU is capable of about 6K samples per second.

Accurate A/D conversion requires a sample frequency at least twice the highest frequency in

the signal being measured. Due to sampling rate limitations of the Chickadee ADC, it is best

suited for DC and low frequency (less than 500 Hz) applications.

Depending on the desired mode of operation, one of three different ADCs may be installed in

U9 - a MAX186, MAX188, or LTC1296. The ADC reference can be either ratiometric

(MAX188 or LTC1296) or absolute (MAX186 only). With a ratiometric reference, the

Chickadee power supply voltage (5 V typical) is used as the ADC conversion reference, giving

a bit weight of 1.221 mV per LSB. Although the 5 V power to a system is rarely well

regulated, if transducers are capable of ratiometric output, then all errors due to reference

voltage drift and accuracy are eliminated. With an absolute reference, all conversions are made

to a 4.095 V reference voltage, giving a bit weight of 1 mV per LSB. The absolute reference

voltage (VREF) is available to your interface circuitry on JP10 pin 26. Do not load VREF by

more than 0.5 mA, or ADC accuracy may suffer. Also, do not change VREF loading during a

conversion. It is best to buffer VREF with an op-amp if you need the reference voltage for

your application circuitry. Unused ADC channels should be connected to ground. ADC input

voltages must not exceed the 5 V supply by more than 0.5 V, or damage may result.

ADC input voltages should not exceed the 5 V supply by more than 50 mV, or conversion

accuracy on other channels may be affected.

When an ADC conversion is initiated, the signal is first acquired by the ADC, then it is

converted. High impedance sources may need extra time to charge the ADC internal

capacitance during acquisition. To calculate the acquisition time, use this formula:

(Eqn. 3-4) tAZ = 1.44 · 10-10 · (RS + 5000)

where tAZ is the time in seconds and RS is the internal resistance of the source

Chapter 3: Hardware Reference

24

For example, a sensor with an internal resistance of 100K needs 1.44 · 10-10 · (100000 + 5000)

= 0.000015 s or 15 us acquisition time. The Sunflower C library contains an ADC function

which allows you to specify the acquisition time in microseconds as an argument to the

function.

The ADC can be operated in either SE (single-ended) or DF (pseudo-differential) mode, or a

combination of both modes. In SE mode, the analog input voltage is referenced to ground. In

DF mode, two channels are paired, and the analog input voltage (+) is referenced to another

input voltage (-), not ground. DF mode has a restriction that the (-) input must be stable within

+/- 0.5 LSB with respect to ground during the conversion. This can be accomplished by

connecting a 0.1 uF capacitor between the (-) input and ground. Table 3-2 shows the possible

ADC channel combinations for DF mode.

Table 3-2: ADC DF Mode Channel Combinations

There are many hardware and software based techniques to eliminate noise in ADC

conversions. Hardware techniques include the use of shielded wire to carry signals, RC

filtering, active filtering, etc. Software based techniques include oversampling, averaging,

digital filtering, etc. One effective way to eliminate 60 Hz power line noise from ADC

conversions is to sample many times over a 60 Hz period (16.67 ms) and average all the

samples together. This has the effect of integrating the AC noise over the entire cycle to zero.

Chapter 3: Hardware Reference

25

Status Indicators: for indicating the current state of relay driver outputs, AC/DC inputs, and

serial ports. Each indicator when lit uses about 10 mA of current from the 5 V power supply,

so be sure to include them in your power budget. The serial port indicators are lit only when

the serial line is in the “0” state, therefore they flicker when data is being transferred.

LCD Port: for standard LCD modules to 4 lines by 40 characters per line which use the

Hitachi HD44780 or compatible display control LSI. Contrast voltage (+2/-5 V) is a function

of Timer 0 duty cycle, and may be adjusted by software. If Timer 0 is used for LCD contrast

adjustment, it is unavailable for other use. The Sunflower C library includes functions to

operate the LCD.

Keypad Port: for matrix keypads up to 4 columns by 4 rows. Storm series keypads or

compatibles may be used with no special wiring harness required. Individual switches may also

be used. The Sunflower C library includes functions to operate the keypad port.

Real Time Clock (RTC): a Dallas DS2404 (U13) combines a 32-bit real time counter with

512 bytes of non-volatile RAM. The Sunflower C library includes functions to operate the

RTC. The RTC output is capable of powering up the Chickadee and other equipment

connected to the -PWRUP pin (JP12 pin 3). This feature can be used to let the system turn

itself on at a previously programmed time and date, do some processing, set the time and date

for the next power up, and then turn itself off. No standby power is required. To use this

feature, a manual pushbutton, relay, and one of the Chickadee relay driver outputs is required.

Connect these items as shown in Fig. 3-6.

Theory of operation: at some time while the Chickadee is powered, the program sets the RTC

alarm registers to a value equal to the future time at which it should power up. Then the relay

driver output is turned off, resulting in breaking of the relay contacts and the disconnection of

power to the Chickadee. Time passes. When the RTC time registers match the alarm

registers, the -PWRUP output energizes the relay. As the relay contacts engage, the

Chapter 3: Hardware Reference

26

Chickadee powers up. After reset, the CPU starts running the program. The program turns on

the relay driver output, then clears the alarm condition from the RTC. After the alarm

condition is cleared, the -PWRUP output no longer energizes the relay, but the relay driver

output keeps it energized. If powerup is required at a time not previously programmed into the

RTC, a manual pushbutton should be added. It is necessary to hold the pushbutton in until the

CPU gets to the place in the program where the relay driver output is turned on.

MANUAL START

Vsupply
+VIN (To Chickadee)

<--PWRUP

RELAY

POWERUP OUTPUT

RTC Alarm

<-OCn

 2

3

1

Q3

 1 2

1

2
D18BITn

RELAY DRIVER OUTPUT

Figure 3-6: Timed Powerup Circuit

0.5K EEPROM: a 24C04 serial EEPROM (U8) provides 512 bytes of nonvolatile erasable,

rewritable storage. Since EEPROM has a finite write endurance of several thousand cycles, it

should only be used to store seldom changing data, such as serial numbers, calibration

constants, etc. The Sunflower C library includes functions to operate the serial EEPROM.

Watchdog Timer Reset: the MAX705 (U10) provides a reset signal to the CPU if the

software goes awry. Your software must reset the watchdog timer before it times out. The

Chapter 3: Hardware Reference

27

time-out interval is a minimum of 1000 ms, maximum of 2250 ms, and typically 1600 ms. You

must leave the watchdog timer disabled during debugging. IMPORTANT: the watchdog

timer function is NOT implemented on Rev. A and Rev. B. If this function is critical to your

application, you must use Rev. C or later.

Power Monitor: the MAX705 (U10) monitors two power supply voltages. The 5 V supply

is monitored to make sure it is at least 4.75 V. The +VIN input voltage (JP12 pin 1) may also

be monitored to give early warning of lost power. The CPU is informed of an impending

power failure via NMI when the PFI (pin 4) of U10 drops below 1.25 V. As a result, the CPU

has time to perform "shut down" activities before power is gone. In order to use this feature, a

resistor must be connected between pins 2 and 3 of JP8. The value of this resistor is used to

set the early warning voltage. This feature is most useful when used in conjunction with the

Voltage Regulator option. The formula for determining the resistor value is:

(Eqn. 3-5) R = 10000 · (Vin / 1.25 - 1)

For example, if you need an early warning voltage of 10 V, use R = 10000 · (10 / 1.25 - 1),

which equals a 70K resistor. Use of a 1% tolerance resistor is recommended. If the early

warning feature is not used, PFI should be connected to the 5 V supply voltage by a jumper

between JP8 pins 1 and 2. See Fig. 3-7.

Chapter 3: Hardware Reference

28

VOLTAGE MONITOR
RESET

 1
 4

 2
 3

SW1

EVQ-PA

1
2
3

JP8

SIP\3P

Vth ADJUST

R24

10.0K
1% MF

VCC

MR 1

VCC 2

GND 3

PFI 4 PFO 5WDI 6RESET 7WDO 8
U10

MAX705CSA

VCC
NC

NC

R23
100K

-RESET

-NMI

VCC

C11
22
TANT

R32
3.01K
1% MF

POWER SUPPLY

 1 2
D11

HER103

+VIN

C12
470
50V

1

2

D17

VIN 4
V
O
U
T

5

G
N
D

3

ON/OFF 2

ADJ 1

U15

LM2941T

1

3

 2
R40
500

5V ADJ

R31
1.00K
1% MF

C13
1
CER

50V

GND

Figure 3-7: Watchdog, Power Monitor, and Voltage Regulator

Voltage Regulator: for operating the Chickadee from 7 to 26 V. Operation above 26 V may

cause damage, and below 7 V may be unstable. Referring to Fig. 3-7, a low-dropout voltage

regulator (U15) drops the input voltage down to a regulated 5 V. A trimmer potentiometer

(R40) is provided to precisely adjust the supply voltage to 5 V for ratiometric A/D

applications. The regulator can supply up to 1 A of current for the Chickadee, PC/104 boards,

and other circuitry. The regulator current capacity is dependent on the voltage input and the

ambient temperature. Use this derating formula:

(Eqn. 3-6) IMAX = 0.0385 · (150 - T) / (VIN - 5.6)

where IMAX is the maximum current in amperes, T is the ambient temperature in Celsius, and

VIN is the voltage on the +VIN input (JP12 pin 1) in volts. For example, +VIN is connected to

Chapter 3: Hardware Reference

29

15 V and the ambient temperature is 70 ºC. The maximum current the regulator can supply

under this condition is 0.0385 · (150 - 70) / (15 - 5.6) = 0.33 A.

It is possible to get more current capacity from the regulator if a bigger heat sink is used.

Contact Bagotronix tech support to discuss this before doing so.

Transient protection is provided when the Chickadee is equipped with the voltage regulator

option. Diode D17 is a transzorb which clamps at about 27 V. Capacitor C12 helps filter any

ripple which may be present. Diode D11 gives protection from reverse polarity.

Processor Failure Indicator: an LED (RESET IND) illuminates when the CPU is in reset.

Reset can be caused by actuation of the reset pushbutton, watchdog time-out (if enabled), or

supply voltage below the MAX705 (U10) power-on reset threshold. If RESET IND blinks, it

indicates that 1) the CPU is resetting but the code is bombing (if watchdog is enabled), 2) the

supply voltage is marginal, or 3) circuitry failure.

Reset Pushbutton: with the normally open pushbutton switch SW1, the CPU can be

manually reset at any time. Use caution before using the reset switch in your control system.

See Fig. 3-7.

Chapter 3: Hardware Reference

30

31

Chapter 4: Software Development

32

Chapter 4: Software Development

33

Overview

This chapter contains information on how to develop the application software for control systems using

the Chickadee. It is assumed that you have already connected your PC to the Chickadee and that the

serial link is working properly. It is also assumed that you have the Chickadee Development System.

Most control system software consists mainly of I/O manipulation and user interface routines. The

remainder consists of data analysis and reduction and conditional statements defining your system’s

operation. The Sunflower C libraries provided with the Chickadee Development System give you a

head start on the I/O and user interface routines. Library routines for using the ADC, digital I/O, RTC,

EEPROM, keypad, LCD, and serial ports let you spend your development time more productively.

Sunflower C library source code is also included if the need to modify the library routines arises.

Application code is written on the PC in Microsoft C/Visual C++ or Borland C/C++. The code is

debugged using Paradigm DEBUG/RT running on the PC, and the DEBUG/RT kernel running on the

Chickadee. The Chickadee Development System contains a preconfigured DEBUG/RT kernel ROM.

Modification of the kernel in these ROMs should not be necessary for most applications. However, if

it should become necessary to modify the kernel, follow the instructions in the DEBUG/RT manual,

then call Bagotronix tech support if you still have problems.

Debugging Port

An RS-232 serial port is needed for debugging software on the Chickadee. The Development System

includes a single serial port PC/104 board and a ROM containing the debugging kernel configured to

use the PC/104 serial port. The extra port enables debugging without tying up any of the Chickadee

on-board serial ports. If desired, the debugger can use a Chickadee on-board serial port instead of the

PC/104 port. This special kernel configuration is available upon request.

Galvanic isolation between the Chickadee control system and your PC may be desirable if the control

system uses a different power source than your PC. This may be especially important for machines

operated from three phase power systems where the building wiring configuration is not known or is

Chapter 4: Software Development

34

known to be troublesome. In this case, the Chickadee RS-232/485 port may be equipped with the

galvanic isolation option and used as a debugger port.

C Startup Code

Every C program requires startup code. Startup code conditions the computer system to be able to run

the program that you have written. Even before the call to main(), some work must be done to set up

the stack, copy initialized variables from ROM to RAM, set aside the heap memory space, etc. In the

case of programs which run on the PC, this is taken care of for you by the Microsoft C/Visual C++ and

Borland C/C++ compilers. Each comes with its own startup code which is inserted during linking.

Since the Chickadee is an embedded computer system, it needs different startup code than that which

comes with the C compilers. The Chickadee does not have the same hardware and operating system

resources that a PC does, so its startup code must be different. Fortunately, LOCATE comes with

startup code that is suitable for embedded computer systems. When you are debugging during the

software development stage, the LOCATE configuration file should be edited so that processor

initialization directives are not included in the startup code for your application. When you are

satisfied with your application software and ready to burn it into an EPROM, the LOCATE

configuration file should be edited so that processor initialization directives are included in the startup

code. The procedures are different because the processor initialization is done by the kernel when it

starts up. At the end of application software development, the kernel is no longer needed, so the

processor initialization must be done by the same startup code that goes with the application program.

Processor initialization directives should not need to be changed for your application unless you intend

to use hardware other than that shipped with the Development System. Refer to the 80C188 data

sheet for details on the programmable chip selects and refresh control unit.

Chapter 4: Software Development

35

Your Application Software

Before you begin coding your application, take the time to print out or browse the Sunflower C

Library source files. You will find that most, if not all, of the routines needed to operate I/O are

already done for you.

Use your imagination to think of ways to use the Chickadee's features in your product. For example, a

menu system using several redefinable keys on a keypad located just under the bottom line in a multi-

line LCD. The text on the bottom line of the LCD could change to indicate context-sensitive functions

of the keys. The RS-232 port could be connected to a modem for teleservicing and remote

monitoring. If flash memory is also used, software updates and bug fixes could be uploaded via

modem. There are many possibilities.

If it is not possible to connect your I/O hardware to the actual machine (or is dangerous to do so), you

should consider building a simulation apparatus for software testing. This could be as simple as

potentiometers used to simulate transducer inputs and toggle switches for digital inputs, or as elaborate

as rack mounted test equipment under control of a computerized stimulus generation program. For

most situations, a pot-and-switch rig is sufficient.

Once the Chickadee is connected to the PC and power supply and the debugger kernel works, you are

ready to begin software development. Link the startup code, compiler libraries, Sunflower C libraries,

and your compiled program together. Make sure the memory model is the same for all program

modules and libraries. Don't forget to tell the compiler to include symbolic debugging information in

the EXE. When linking is finished, use LOCATE to produce an absolute (AXE) file, then send the

AXE to the Chickadee via DEBUG/RT. Then debug your program.

Things to Watch Out For

Unless you have a ROMable DOS and BIOS installed, do not use DOS or BIOS function calls. Since

there is no DOS or BIOS, your program will bomb if you do so. Be careful of the Microsoft C/Visual

C++ and Borland C/C++ libraries. Many of the functions in these libraries use DOS or BIOS calls but

do not document this crucial fact. If a particular library function is suspect, instruct the compiler to

Chapter 4: Software Development

36

compile to assembly, then manually check the resulting ASM file. If it contains any INT 21h (DOS) or

INT 10h-1Fh (BIOS) calls, you cannot use that library function in your application. For malloc() and

other essentials, LOCATE provides an alternate library that does not use DOS or BIOS calls. If you

desire a ROMable DOS, call Bagotronix for details.

Unless you really need floating point in your application, try to do without it. The C floating point

emulation libraries are not reentrant, so they are of limited use for multitasking control programs

(special reentrant libraries do exist). Many computations can be performed with satisfactory precision

using integer arithmetic or lookup tables. Floating point will increase the size of your code and slow it

down when calculations are being performed. Integer (16-bit) and long integer (32-bit) calculations are

much faster. Fractional quantities can be expressed as integers if an artificial decimal point is inserted.

Example: if you are measuring fluid volume to the nearest hundredth liter, an unsigned integer variable

gives you a range of 0.00 to 655.35 liters with a resolution of 0.01 liters. On the other hand, if you

have the ROM space and the CPU time, do what you like.

Sunflower C Library

As you look through the source code of the library functions, you may notice there are conditional

compilation directives for the PC. These directives enable the library functions to be used on the PC as

well as the Chickadee. This might be useful if, for example, the Chickadee is part of a remote machine

monitoring system, and the PC is the data collector. By changing a #define and recompiling, you could

use the serial port functions both on the Chickadee and on the PC. Be sure to keep the Chickadee and

PC libraries in separate directories.

37

Chapter 5: Interrupts

38

Chapter 5: Interrupts

39

Overview

Interrupts are so fundamental to I/O and control applications, an entire chapter on this topic is

warranted. Since hardware and software interrupts occur due to different circumstances, only

hardware interrupts will be covered in this chapter. Getting interrupts to function correctly can

require a great deal of thought and patience. With the Sunflower C library, most the software

work has already been done for you. However, you do need to understand the underlying

principles to be assured that your software works the way you want it to.

In the discussions that follow, occasional references are made to PC interrupts. It is necessary

to understand PC interrupts only if you intend to use some of the Sunflower C functions on the

PC. This might be desirable, for example, if your application requires the Chickadee to

communicate with a PC via a serial port. Recompiling the Sunflower C COMM functions for

the PC would supply you with both sides of the communication software solution.

Brief Review: 80x86 Interrupts

The 80x86 family of microprocessors has a table of 256 interrupt vectors located in the first

1KB of address space (00000h - 003ffh). Each interrupt vector consists of a segment and

offset which correspond to the address of the interrupt service routine for that interrupt. When

a hardware or software interrupt occurs, the FLAGS are pushed onto the stack, followed by

the CS and IP registers. The CS and IP registers are then loaded with the address of the

interrupt service routine (ISR) that is associated with that vector. Execution of the ISR begins

and continues until the IRET instruction. The old IP, CS, and FLAGS are then popped off the

stack and program execution continues at the point where it was interrupted.11

The Interrupt Control Unit

On both the Chickadee and the PC, an Interrupt Control Unit (ICU) is responsible for handling

the interaction between requesting sources and the CPU. On the PC, the ICU is an 8259 or a

 1180C186EA/80C188EA User's Manual, (Intel Corporation, 1991), Chapter 2, pp. 34-36.

Chapter 5: Interrupts

40

compatible chip set. On the Chickadee, the ICU is inside the 80C188 itself. The Chickadee

and PC ICU's are not software compatible.

With the proper software, interrupts IRQ4 and IRQ7 may be shared. Interrupt service routines

(ISR) may either be chained or handled by a master ISR. Examples of each follow.

One interrupt source:

void interrupt isr (void) { /* your interrupt handler */

/* some code */

}

.

.

disable(); /* disable interrupts */

/* do not use compiler’s setvect-it has a DOS call */

setvect (IRQ4_VEC, isr); /* LOCATE’s setvect () */

enable(); /* enable interrupts */

Two or more interrupt sources using chaining:

When chaining interrupts, a vector is initially set with the address of an ISR. Later, the same

vector is saved in a program variable, and then set with the address of another ISR. This new

ISR must contain a test to determine if its requesting source caused the interrupt. If not, the

old ISR is called.

void interrupt (*oldvect)(); /* ptr to interrupt func */

void interrupt isr1 (void) {

/* some code */

}

void interrupt isr2 (void) {

if (/* test condition goes here */) {

/* I did it. Handler code goes here. */

Chapter 5: Interrupts

41

}

else /* Not me! Must have been the first ISR. */

oldvect(); /* call first ISR */

}

.

.

disable(); /* disable interrupts */

/* setting vector to first isr; do not use compiler setvect-it has a DOS call */

setvect (IRQ4_VEC, isr1); /* LOCATE’s setvect () */

enable(); /* enable interrupts */

.

.

/* storing vector to first isr; do not use compiler getvect - it has a DOS call */

oldvect = getvect (IRQ4_VEC); /* LOCATE’s getvect () */

disable(); /* disable interrupts */

setvect (IRQ4_VEC, isr2);); /* LOCATE’s setvect () */

enable(); /* enable interrupts */

Be sure to install the ISR which must be serviced with the least delay last, since it will be

processed first when the interrupt occurs.

Two or more interrupt sources using master ISR:

When using a master ISR, the interrupt functions must be rewritten as "pseudo-ISRs", that is,

normal C functions returning type int and taking no arguments. The returned value indicates

whether the called pseudo-ISR handled the request. If not, the next pseudo-ISRs are called in

sequence until one handles the request or all four have been called.

void interrupt MasterISR (void);

int isr1 (void) {

if (/* test condition goes here */) {

/* I did it. Handler code goes here. */

Chapter 5: Interrupts

42

return 1; /* return 1 indicating it was me */

}

else /* Not me! Must have been some other ISR. */

return 0; /* return 0 indicating it wasn't me */

}

int isr2 (void);

int isr3 (void); /* similar to above */

.

.

disable();

setvect (IRQ4_VEC, MasterISR);

IRQ4setvect (1, isr1); /* put in master ISR slot 1 */

IRQ4setvect (2, isr1); /* slot 2 */

IRQ4setvect (3, isr1); /* slot 3 */

enable();

There are special considerations with this approach. The function IRQ4setvect(), which must

be written by you, fills an element of an array of function pointers with the function pointer

passed to it, in the element index passed to it. MasterISR(), also written by you, is the actual

ISR processed when the interrupt occurs. MasterISR() calls each pseudo-ISR in sequence

until a value of 1 is returned. At this point, MasterISR() knows that the interrupt has been

serviced by the proper pseudo-ISR, and now may return from the interrupt.

If using a small program model (near code only), near pointers to the pseudo-ISRs are okay. If

using a large program model (far code), far pointers to the pseudo-ISRs are required. You

must also be careful not to call a null function pointer.

Chapter 5: Interrupts

43

End-of-interrupt (EOI)

An EOI is required to reset the ICU after servicing any hardware interrupt.12 Example:

void interrupt TypicalISR (void) {

/* some code */

.

.

NEOI(); /* non-specific end-of-interrupt */

}

On the Chickadee, a non-specific EOI is issued with the following C code:

NEOI(); /* see chickade.h header file for macro def */

When the interrupting ICU line is in level-triggered mode, do not issue EOI until the

interrupting condition has been reset and the ICU line has returned to a low logic level.

Otherwise, recursive interrupts will occur, resulting in stack overflow and a program crash.

Tips

1) When setting an interrupt vector, disable interrupts before and enable them afterwards.

This prevents the remote chance of a interrupt occurring halfway through the vector setting

process, which would cause a program crash.

2) If using DOS, do not call DOS functions from an interrupt handler. Doing so will cause a

program crash because DOS is not reentrant. Also, if you are using a multitasking executive,

you must restrict access to DOS to only one task at a time.

 1280C186EA/80C188EA User's Manual, (Intel Corporation, 1991), Chapter 8, p. 5.

Chapter 5: Interrupts

44

3) When using chained interrupts, install the interrupt needing the least latency last. This

makes it the first to execute when the interrupt occurs.

4) If insertion and removal of multiple ISR's is required, the master ISR technique must be

used. An ISR can be removed by setting a NULL vector. The calling order can be changed

also, allowing for latency adjustments if needed.

5) The master ISR technique is more efficient than chaining for more than two interrupt

sources.

6) When using C++ and multitasking, beware of the new() and delete() operators, since they

handle heap memory by calling malloc() and free(). This process is not reentrant. A program

crash could occur if a task gets preempted during instantiation of an object, and the new task

instantiates another object. Since the previous hidden call to malloc() was not finished, the

heap could be corrupt. The solutions to this problem are 1) do not use C++ dynamic objects,

2) guard all C++ dynamic object instantiations with a semaphore, or 3) modify the malloc()

function in the LOCATE library to guard itself with a built-in semaphore. The same

recommendations apply to free() and the destruction of C++ dynamic objects.

45

Appendix A: I/O and Memory Address Map

46

Appendix A: I/O and Memory Address Map

47

I/O Address Map

The 80C188 Chip Select Unit must be programmed after reset to locate the on-board

peripherals in I/O space in accordance with this mapping. All I/O address are in hexadecimal.

* No hardware implementation

** Used for other purpose

000 - 3FF Available to PC/104

80C188 -PCS0: 400 - 47F

400 - 407 COM1 16C450 or 16C550 UART:

400 RBR (Receive Buffer Register) (read only, DLAB = 0)

400 THR (Transmit Holding Register) (write only, DLAB = 0)

400 DLL (Divisor Latch LSB) (DLAB = 1)

401 DLM (Divisor Latch MSB) (DLAB = 1)

401 IER (Interrupt Enable Register) (DLAB = 0):

Bit 0 ERBFI (Enable Received Data Available Interrupt)

Bit 1 ETBEI (Enable Transmitter Holding Register Empty Interrupt)

Bit 2 ELSI (Enable Receiver Line Status Interrupt)

Bit 3 EDSSI (Enable Modem Status Interrupt)

Bit 4-7 Reserved (write as 0)

402 IIR (Interrupt Identification Register) (read only):

Bit 0 “0” If Interrupt Pending

Bit 1 Interrupt ID Bit 0

Bit 2 Interrupt ID Bit 1

Bit 3 Interrupt ID Bit 2 (16C550 only, 16C450 = 0)

Bit 4-5 Reserved

Bit 6-7 FIFOs Enabled

402 FCR (FIFO Control Register) (16C550 only, write only):

Bit 0 FIFO Enable

Bit 1 RCVR FIFO Reset

Appendix A: I/O and Memory Address Map

48

Bit 2 XMIT FIFO Reset

Bit 3 DMA Mode Select

Bit 4-5 Reserved (write as 0)

Bit 6 RCVR Trigger LSB

Bit 7 RCVR Trigger MSB

403 LCR (Line Control Register):

Bit 0 WLSB0 (Word Length Select Bit 0)

Bit 1 WLSB1 (Word Length Select Bit 1)

Bit 2 STB (Number of Stop Bits)

Bit 3 PEN (Parity Enable)

Bit 4 EPS (Even Parity Select)

Bit 5 Stick Parity

Bit 6 Set Break

Bit 7 DLAB (Divisor Latch Access Bit)

404 MCR (Modem Control Register):

Bit 0 DTR (Data Terminal Ready) *

Bit 1 RTS (Request To Send)

Bit 2 Out 1 *

Bit 3 INT (Interrupt Pin Enable)

Bit 4 Loop

Bit 5-7 Reserved (write as 0)

405 LSR (Line Status Register):

Bit 0 DR (Data Ready)

Bit 1 OE (Overrun Error)

Bit 2 PE (Parity Error)

Bit 3 FE (Framing Error)

Bit 4 BI (Break Interrupt)

Bit 5 THRE (Transmitter Holding Register Empty)

Bit 6 TEMT (Transmitter Empty)

Bit 7 Error in RCVR FIFO (16C550 only)

Appendix A: I/O and Memory Address Map

49

406 MSR (Modem Status Register):

Bit 0 DCTS (Delta Clear To Send)

Bit 1 DDSR (Delta Data Set Ready) *

Bit 2 TERI (Trailing Edge Ring Indicator) *

Bit 3 DRSLD (Delta Receive Line Signal Detect) *

Bit 4 CTS (Clear To Send)

Bit 5 DSR (Data Set Ready) *

Bit 6 RI (Ring Indicator) *

Bit 7 DCD (Data Carrier Detect) *

407 SCR (Scratch Register)

408 - 47F Reserved

80C188 -PCS1: 480 - 4FF

480 - 487 COM2 16C450 or 16C550 UART:

480 RBR (Receive Buffer Register) (read only, DLAB = 0)

480 THR (Transmit Holding Register) (write only, DLAB = 0)

480 DLL (Divisor Latch LSB) (DLAB = 1)

481 DLM (Divisor Latch MSB) (DLAB = 1)

481 IER (Interrupt Enable Register) (DLAB = 0):

Bit 0 ERBFI (Enable Received Data Available Interrupt)

Bit 1 ETBEI (Enable Transmitter Holding Register Empty Interrupt)

Bit 2 ELSI (Enable Receiver Line Status Interrupt)

Bit 3 EDSSI (Enable Modem Status Interrupt)

Bit 4-7 Reserved (write as 0)

482 IIR (Interrupt Identification Register) (read only):

Bit 0 “0” If Interrupt Pending

Bit 1 Interrupt ID Bit 0

Bit 2 Interrupt ID Bit 1

Bit 3 Interrupt ID Bit 2 (16C550 only, 16C450 = 0)

Bit 4-5 Reserved

Appendix A: I/O and Memory Address Map

50

Bit 6-7 FIFOs Enabled

482 FCR (FIFO Control Register) (16C550 only, write only):

Bit 0 FIFO Enable

Bit 1 RCVR FIFO Reset

Bit 2 XMIT FIFO Reset

Bit 3 DMA Mode Select

Bit 4-5 Reserved (write as 0)

Bit 6 RCVR Trigger LSB

Bit 7 RCVR Trigger MSB

483 LCR (Line Control Register):

Bit 0 WLSB0 (Word Length Select Bit 0)

Bit 1 WLSB1 (Word Length Select Bit 1)

Bit 2 STB (Number of Stop Bits)

Bit 3 PEN (Parity Enable)

Bit 4 EPS (Even Parity Select)

Bit 5 Stick Parity

Bit 6 Set Break

Bit 7 DLAB (Divisor Latch Access Bit)

484 MCR (Modem Control Register):

Bit 0 DTR (Data Terminal Ready) *

Bit 1 RTS (Request To Send)

Bit 2 Out 1 *

Bit 3 INT (Interrupt Pin Enable)

Bit 4 Loop

Bit 5-7 Reserved (write as 0)

485 LSR (Line Status Register):

Bit 0 DR (Data Ready)

Bit 1 OE (Overrun Error)

Bit 2 PE (Parity Error)

Bit 3 FE (Framing Error)

Appendix A: I/O and Memory Address Map

51

Bit 4 BI (Break Interrupt)

Bit 5 THRE (Transmitter Holding Register Empty)

Bit 6 TEMT (Transmitter Empty)

Bit 7 Error in RCVR FIFO (16C550 only)

486 MSR (Modem Status Register):

Bit 0 DCTS (Delta Clear To Send)

Bit 1 DDSR (Delta Data Set Ready) *

Bit 2 TERI (Trailing Edge Ring Indicator) **

Bit 3 DRSLD (Delta Receive Line Signal Detect) **

Bit 4 CTS (Clear To Send)

Bit 5 DSR (Data Set Ready) *

Bit 6 RI (Ring Indicator, used by ADC SSTRB line) **

Bit 7 DCD (Data Carrier Detect, used by AC/DC Shift Register Output) **

487 SCR (Scratch Register)

488 - 4FF Reserved

80C188 -PCS2: 500 - 57F

500 - 503 Bit-Bang Port (used for RTC, EEPROM, ADC, AC/DC inputs, LCD, keypad)

500 Data:

Bit 0 Not used

Bit 1 LCD Register Select

Bit 2 LCD Data Bit 4

Bit 3 LCD Data Bit 5

Bit 4 LCD Data Bit 6

Bit 5 LCD Data Bit 7, AC/DC Shift/Load

Bit 6 LCD Enable 1

Bit 7 LCD Enable 2

501 Status (read only):

Bit 0-2 Reserved

Bit 3 ERROR (Serial Data In)

Appendix A: I/O and Memory Address Map

52

Bit 4 SLCT (Keypad Row B)

Bit 5 PE (Keypad Row A)

Bit 6 ACK (Keypad Row D)

Bit 7 BUSY (Keypad Row C)

502 Control:

Bit 0 STROBE (Serial Clock)

Bit 1 AUTOFD (ADC Chip Select)

Bit 2 INIT (RTC Chip Select)

Bit 3 SLIN (Serial Data I/O)

Bit 4-7 Not used

503 Not used

504 - 57F Reserved

80C188 -PCS3: 580 - 5FF

580 - 583 82C55 PIA

580 Port A:

Bit 0-7 TTL I/O on JP11

581 Port B:

Bit 0-6 Relay driver outputs on JP12 pins 4-10

Bit 7 Reserved (write as 0)

582 Port C:

Bit 0-7 TTL I/O on JP11

583 Control Word:

Bit 0 Port CL I/O

Bit 1 Port B I/O

Bit 2 Mode Selection Group B

Bit 3 Port CH I/O

Bit 4 Port A I/O

Bit 5-6 Mode Selection Group A

Bit 7 Mode Set Flag

Appendix A: I/O and Memory Address Map

53

584 - 5FF Reserved

80C188 -PCS4: 600 - 67F

600 - 67F Reserved

80C188 -PCS5: 680 - 6FF

680 - 6FF Reserved

80C188 -PCS6: 700 - 77F

700 Watchdog

701 - 77F Reserved

780 - FEFF Reserved

80C188 PCB (Peripheral Control Block): FF00 - FFFF

Consult the Intel 80C188 User’s Manual or ApBUILDER for the following peripherals:

• Peripheral Control Block

• Chip Select Unit

• Refresh Control Unit

• Interrupt Controller Unit

• Timer/Counter Unit

• DMA Unit

• Power Management Unit

Appendix A: I/O and Memory Address Map

54

Memory Address Map

The 80C188 Chip Select Unit must be programmed after reset to locate the on-board memory

in accordance with this mapping. All memory address are in hexadecimal.

RAM:

128K RAM (-LCS generated chip select):

00000 - 1FFFF SRAM

20000 - 7FFFF Available to PC/104

256K RAM (-LCS generated chip select):

00000 - 3FFFF SRAM

40000 - 7FFFF Available to PC/104

512K RAM (U5 generated chip select):

00000 - 7FFFF SRAM

ROM:

64K ROM (-UCS generated chip select):

80000 - EFFFF Available to PC/104

F0000 - FFFFF ROM

128K ROM (-UCS generated chip select):

80000 - DFFFF Available to PC/104

E0000 - FFFFF ROM

256K ROM (-UCS generated chip select):

80000 - BFFFF Available to PC/104

C0000 - FFFFF ROM

Appendix A: I/O and Memory Address Map

55

512K ROM (U5 generated chip select):

80000 - FFFFF ROM

In addition to the standard ROM sizes shown, odd ROM sizes can be accommodated using U5

to generate the ROM chip select. For example, you may want a 192K ROM from

D0000 - FFFF and PC/104 from 80000 - CFFFF. In this case, a 256K ROM and special

programming of U5 would make 192K of the 256K ROM available for use, and the 64K

remainder available for PC/104. Contact Bagotronix tech support if you need a special

memory map.

Appendix A: I/O and Memory Address Map

56

57

Appendix B: Interrupt Map

58

Appendix B: Interrupt Map

59

Interrupt Map

Consult the Intel 80C188 User’s Manual or ApBUILDER regarding the use of any interrupts

not listed here. This listing is only for hardware interrupts used in the Chickadee.

Vector # (hex) Vector Stored At (hex) Description

2 00008 NMI (used by voltage monitor)

8 00020 Timer 0 (used by LCD contrast)

A 00028 DMA0 (used as IRQ6)

B 0002C DMA1 (used as IRQ3)

C 00030 INT0 (used as IRQ4)

D 00034 INT1 (used as IRQ5)

E 00038 INT2 (used as IRQ2)

F 0003C INT3 (used as IRQ7)

12 00048 Timer 1

13 0004C Timer 2

Interrupt Assignments

IRQ2 PC/104

IRQ3 PC/104

IRQ4 On-board COM1 (can be shared with PC/104)

IRQ5 PC/104

IRQ6 PC/104

IRQ7 On-board COM2 (can be shared with PC/104)

Appendix B: Interrupt Map

60

61

Appendix C: Connections

62

Appendix C: Connections

63

The following header pin tables are referenced to the component side of the PCB. Except as

noted, pin 1 is a square pad. Except as noted, dual-row header pins are odd numbered (1, 3, 5,

7...) in the row with the square pad (pin 1), and even numbered (2, 4, 6, 8...) in the other row.

If installing jumpers from the solder side of the PCB, remember to mentally “mirror” the header

pins.

Appendix C: Connections

64

J1/P1 - PC/104 Header:

Active low signals are designated by an asterisk (*). Note: J1/P1 pins are consecutively

numbered within the same row. See Fig. C-1.

Pin Number J1/P1 Row A Description
1 IOCHCHK* I/O Channel Check - input; not implemented, NC
2 SD7 System Data bit 7 - bidirectional 3-state with 10K pull-up resistor
3 SD6 System Data bit 6 - bidirectional 3-state with 10K pull-up resistor
4 SD5 System Data bit 5 - bidirectional 3-state with 10K pull-up resistor
5 SD4 System Data bit 4 - bidirectional 3-state with 10K pull-up resistor
6 SD3 System Data bit 3 - bidirectional 3-state with 10K pull-up resistor
7 SD2 System Data bit 2 - bidirectional 3-state with 10K pull-up resistor
8 SD1 System Data bit 1 - bidirectional 3-state with 10K pull-up resistor
9 SD0 System Data bit 0 - bidirectional 3-state with 10K pull-up resistor
10 IOCHRDY I/O Channel Ready - input with 1K pull-up resistor; pull low to insert

wait states
11 AEN Address Enable - output; not implemented, tied to GND
12 SA19 System Address bit 19 - output
13 SA18 System Address bit 18 - output
14 SA17 System Address bit 17 - output
15 SA16 System Address bit 16 - output
16 SA15 System Address bit 15 - output
17 SA14 System Address bit 14 - output
18 SA13 System Address bit 13 - output
19 SA12 System Address bit 12 - output
20 SA11 System Address bit 11 - output
21 SA10 System Address bit 10 - output
22 SA9 System Address bit 9 - output
23 SA8 System Address bit 8 - output
24 SA7 System Address bit 7 - output
25 SA6 System Address bit 6 - output
26 SA5 System Address bit 5 - output
27 SA4 System Address bit 4 - output
28 SA3 System Address bit 3 - output
29 SA2 System Address bit 2 - output
30 SA1 System Address bit 1 - output
31 SA0 System Address bit 0 - output
32 GND Ground

Table C-1: PC/104 Expansion Bus Signals

Appendix C: Connections

65

Pin Number J1/P1 Row B Description
1 GND Ground
2 RESETDRV Reset Driver - output; active high when CPU is in reset
3 +5V +5V power supply voltage
4 IRQ2 Interrupt Request 2 - input with 10K pull-up resistor
5 -5V -5V power supply voltage - not required or generated by Chickadee
6 DRQ2 DMA Request 2 - input; not implemented; NC
7 -12V -12V power supply voltage - not required or generated by Chickadee
8 ENDXFR* End Transfer - input; not implemented; NC
9 +12V +12V power supply voltage - not required or generated by Chickadee

10 (KEY) Ground - used for connector keying on some PC/104 systems
11 SMEMW* System Memory Write - output; active low
12 SMEMR* System Memory Read - output; active low
13 IOW* I/O Write - output; active low
14 IOR* I/O Read - output; active low
15 DACK3* DMA Acknowledge 3 - output; not implemented; tied to +5V
16 DRQ3 DMA Request 3 - input; not implemented; NC
17 DACK1* DMA Acknowledge 1 - output; not implemented; tied to +5V
18 DRQ1 DMA Request 1 - input; not implemented; NC
19 REFRESH* DRAM Refresh - output; connected to Refresh Control Unit
20 SYSCLK System Clock - frequency related to CPU clock
21 IRQ7 Interrupt Request 7 - input with 10K pull-up or 1K pull-down resistor
22 IRQ6 Interrupt Request 6 - input with 10K pull-up resistor
23 IRQ5 Interrupt Request 5 - input with 10K pull-up resistor
24 IRQ4 Interrupt Request 4 - input with 10K pull-up or 1K pull-down resistor
25 IRQ3 Interrupt Request 3 - input with 10K pull-up resistor
26 DACK2* DMA Acknowledge 2 - output; not implemented; tied to +5V
27 TC Terminal Count - output; not implemented; tied to Ground
28 BALE Bus Address Latch Enable - output; indicates valid address when low
29 +5V +5V power supply voltage
30 OSC 14.31818 MHz Oscillator - output; not implemented; NC
31 GND Ground
32 GND Ground

Table C-1 (continued): PC/104 Expansion Bus Signals

Appendix C: Connections

66

Figure C-1: Chickadee Connections

Appendix C: Connections

67

Fig. C-2: Chickadee Jumpers

Appendix C: Connections

68

JP1- External Battery Connector:

See Fig. C-1.

Pin Number Description
1 Battery + (square pad)
2 Battery -

JP2, JP4, JP5 - Interrupt Configuration:

See Fig. C-2.

Jumper Configuration
JP2 1-2
JP4 1-2

Non-shared IRQ4

JP2 1-3 Shared IRQ4
JP2 5-6
JP5 1-2

Non-shared IRQ7

JP2 4-6 Shared IRQ7

JP3 - ROM Configuration:

ROM sizes are in bits (1M = 128K x 8). See Fig. C-2.

Jumper Configuration
JP3 1-3 <= 1M ROM
JP3 3-5 2M ROM
JP3 3-5
JP3 4-6

4M ROM

JP3 1-3
JP3 2-4

<= 1M Flash

JP3 3-5
JP3 2-4

2M Flash

JP6 - PC/104 Power Connector:

Use this connector to supply +12, -12, and -5 V to PC/104 boards. The Chickadee does not

supply or require any voltages other than +5 V. See Fig. C-1.

Pin Description
1 +12V
2 Ground
3 -12V
4 +5V
5 -5V

Appendix C: Connections

69

JP7 - RAM Configuration:

RAM sizes are in bits (1M = 128K x 8). See Fig. C-2.

Jumper Configuration
JP7 1-3 <= 1M RAM
JP7 3-5 2M RAM
JP7 3-5
JP7 4-6

4M RAM

JP7 1-3
JP7 2-4

<= 1M Pseudostatic RAM

JP7 3-5
JP7 2-4

2M Pseudostatic RAM

JP8 - Early Power Fail Warning Configuration:

See Fig. C-2.

Jumper Configuration
JP8 1-2 Early Power Fail Warning not used
JP8 2-3 Connect resistor between these two pins

JP9 - Connector for LCDs with Dual-Row Headers:

See Fig. C-1.

Pin Description
1 VCC
2 Ground
3 RS
4 VEE
5 E (E1 for LCDs with 2 display controllers)
6 Ground
7 Not connected
8 Not connected
9 Not connected

10 Not connected
11 Data bit 5
12 Data bit 4
13 Data bit 7
14 Data bit 6
15 E2 (for LCDs with 2 display controllers)
16 E1 (for LCDs with 2 display controllers)

Appendix C: Connections

70

JP10 - ADC Connector:

See Fig. C-1.

Pin Description
1 Analog Input 7
2 Ground
3 Ground
4 Ground
5 Analog Input 6
6 Ground
7 Analog Input 5
8 Ground
9 Ground

10 Ground
11 Analog Input 4
12 Ground
13 Analog Input 3
14 Ground
15 Ground
16 Ground
17 Analog Input 2
18 Ground
19 Analog Input 1
20 Ground
21 Ground
22 Ground
23 Analog Input 0
24 Ground
25 Ground
26 Analog Reference

Appendix C: Connections

71

JP11 - RS-232 and I/O Connector:

See Fig. C-1.

Pin Description
1,2,7,8,10 Not connected

3 COM1 RS-232 Receive Data
4 COM1 RS-232 Request To Send
5 COM1 RS-232 Transmit Data
6 COM1 RS-232 Clear To Send
9 COM1 RS-232 Signal ground

11 Timer 0 input (pulled up to +5V by 10K resistor)
12-50 even Ground

13 Timer 1 input (pulled up to +5V by 10K resistor)
15 Timer 1 output
17 82C55 Port A bit 4
19 82C55 Port A bit 5
21 82C55 Port A bit 6
23 82C55 Port A bit 7
25 82C55 Port A bit 3
27 82C55 Port A bit 2
29 82C55 Port A bit 1
31 82C55 Port A bit 0
33 82C55 Port C bit 0
35 82C55 Port C bit 1
37 82C55 Port C bit 2
39 82C55 Port C bit 3
41 82C55 Port C bit 4
43 82C55 Port C bit 5
45 82C55 Port C bit 6
47 82C55 Port C bit 7
49 +5V

Appendix C: Connections

72

JP12 - Power & I/O Connector:

Although JP12 is a three-row header, all three rows are electrically connected. This means that

a wide variety of connectors can be accommodated: 0.1” screw terminals, dual-row IDC

headers, Wago spring terminals, discrete wires, etc. See Fig. C-1.

Pin Description
1 +VIN (+5V or 7-26V if voltage regulator option installed)
2 Ground
3 -PWRUP (open-drain output for timed powerup; if real time clock option installed)
4 Relay driver output (from 82C55 Port B bit 0)
5 Relay driver output (from 82C55 Port B bit 1)
6 Relay driver output (from 82C55 Port B bit 2)
7 Relay driver output (from 82C55 Port B bit 3)
8 Relay driver output (from 82C55 Port B bit 4)
9 Relay driver output (from 82C55 Port B bit 5)

10 Relay driver output (from 82C55 Port B bit 6)
11 AC/DC input bit 0 (group 0)
12 AC/DC input bit 1 (group 0)
13 AC/DC input bit 2 (group 0)
14 AC/DC input bit 3 (group 0)
15 AC/DC input group 0 common
16 AC/DC input group 1 common
17 AC/DC input bit 4 (group 1)
18 AC/DC input bit 5 (group 1)
19 AC/DC input bit 6 (group 1)
20 AC/DC input bit 7 (group 1)

JP14 - RS-485 Termination Jumper:

Install a jumper on this header to activate 100 ohm AC termination of the RS-485 multi-drop

bus. Only the nodes at each end of the bus should be terminated. All other nodes in between

should not have this jumper installed. See Fig. C-2.

Appendix C: Connections

73

JP15 - RS-232/485 Connector:

See Fig. C-1.

Pin Description
1 RS-485 +
2 RS-485 -

7,8,10 Not connected
3 COM2 RS-232 Receive Data
4 COM2 RS-232 Request To Send
5 COM2 RS-232 Transmit Data
6 COM2 RS-232 Clear To Send
9 COM2 RS-232/485 Signal ground

JP16 - LCD 14x1 Header:

Use this header to connect LCDs which have a single row of 14 pins. See Fig. C-1.

Pin Description
1 Ground
2 +5V
3 VEE (contrast drive voltage output)
4 RS
5 Ground
6 E

7,8,9,10 Not connected
11 LCD data bit 4
12 LCD data bit 5
13 LCD data bit 6
14 LCD data bit 7

JP17 - Keypad Connector:

See Fig. C-1.

Pin Description
1 Keypad Row A (input, pulled to +5V by 10K resistor)
2 Keypad Row B (input, pulled to +5V by 10K resistor)
3 Keypad Column 1 (output, open-collector, +5V max.)
4 Keypad Column 2 (output, open-collector, +5V max.)
5 Keypad Column 3 (output, open-collector, +5V max.)
6 Keypad Column 4 (output, open-collector, +5V max.)
7 Keypad Row D (input, pulled to +5V by 10K resistor)
8 Keypad Row C (input, pulled to +5V by 10K resistor)

